Search results

1 – 2 of 2
Article
Publication date: 13 August 2018

Sebastian Grabmaier, Matthias Jüttner and Wolfgang Rucker

Considering the vector Helmholtz equation in three dimensions, this paper aims to present a novel approach for coupling the finite element method and a boundary integral…

Abstract

Purpose

Considering the vector Helmholtz equation in three dimensions, this paper aims to present a novel approach for coupling the finite element method and a boundary integral formulation. It is demonstrated that the method is well-suited for many realistic three-dimensional problems in high-frequency engineering.

Design/methodology/approach

The formulation is based on partial solutions fulfilling the global boundary conditions and the iterative interaction between them. In comparison to other coupling formulation, this approach avoids the typical singularity in the integral kernels. The approach applies ideas from domain decomposition techniques and is implemented for a parallel calculation.

Findings

Using confirming elements for the trace space and default techniques to realize the infinite domain, no additional loss in accuracy is introduced compared to a monolithic finite element method approach. Furthermore, the degree of coupling between the finite element method and the integral formulation is reduced. The accuracy and convergence rate are demonstrated on a three-dimensional antenna model.

Research limitations/implications

This approach introduces additional degrees of freedom compared to the classical coupling approach. The benefit is a noticeable reduction in the number of iterations when the arising linear equation systems are solved separately.

Practical implications

This paper focuses on multiple heterogeneous objects surrounded by a homogeneous medium. Hence, the method is suited for a wide range of applications.

Originality/value

The novelty of the paper is the proposed formulation for the coupling of both methods.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2018

Markus Wick, Sebastian Grabmaier, Matthias Juettner and Wolfgang Rucker

The high computational effort of steady-state simulations limits the optimization of electrical machines. Stationary solvers calculate a fast but less accurate approximation…

Abstract

Purpose

The high computational effort of steady-state simulations limits the optimization of electrical machines. Stationary solvers calculate a fast but less accurate approximation without eddy-currents and hysteresis losses. The harmonic balance approach is known for efficient and accurate simulations of magnetic devices in the frequency domain. But it lacks an efficient method for the motion of the geometry.

Design/methodology/approach

The high computational effort of steady-state simulations limits the optimization of electrical machines. Stationary solvers calculate a fast but less accurate approximation without eddy-currents and hysteresis losses. The harmonic balance approach is known for efficient and accurate simulations of magnetic devices in the frequency domain. But it lacks an efficient method for the motion of the geometry.

Findings

The three-phase symmetry reduces the simulated geometry to the sixth part of one pole. The motion transforms to a frequency offset in the angular Fourier series decomposition. The calculation overhead of the Fourier integrals is negligible. The air impedance approximation increases the accuracy and yields a convergence speed of three iterations per decade.

Research limitations/implications

Only linear materials and two-dimensional geometries are shown for clearness. Researchers are encouraged to adopt recent harmonic balance findings and to evaluate the performance and accuracy of both formulations for larger applications.

Practical implications

This method offers fast-frequency domain simulations in the optimization process of rotating machines and so an efficient way to treat time-dependent effects such as eddy-currents or voltage-driven coils.

Originality/value

This paper proposes a new, efficient and accurate method to simulate a rotating machine in the frequency domain.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 2 of 2